FIVE-YEAR SURVIVAL RATE OF BREAST CANCER PATIENTS IN BRUNEI DARUSSALAM.

E LEONG¹, F MADLI¹, SK ONG²,³
¹ Faculty of Science, Universiti Brunei Darussalam, Jln Tungku Link, Brunei Darussalam,
² NCD Prevention Unit, Ministry of Health, Commonwealth Drive, Brunei Darussalam,
³ Early Detection & Cancer Prevention Services, Pantai Jerudong Specialist Centre, Brunei Darussalam.

ABSTRACT

Introduction: Breast cancer is the most common cancer and leading cause of cancer deaths among women worldwide. In Brunei Darussalam, breast cancer has the highest incidence rate among women. This study presents the survival rate of women diagnosed with breast cancer in Brunei Darussalam and explores the association between survival and demographic or clinical characteristics. Methods: This is a retrospective study of breast cancer diagnosed from 2007 to 2017 among women in Brunei Darussalam. Cancer data was retrieved from population based cancer registry. Kaplan-Meier survival analysis and Log rank test were applied to estimate the survival rates and the association between survival and important patients’ characteristics. Hazard ratios were derived using Cox Proportional Hazard model. Results: The survival rates of breast cancer patients at 1, 3 and 5 years were 89.5%, 79.2% and 72.0% respectively. The 5-year survival rates for cancer stages were 92.2% for localized, 76.9% for regional, and 21.4% for distant metastasis. Ethnicity, cancer stages and cancer stages-morphology interaction were significant independent predictors for breast cancer survival in Brunei Darussalam. Conclusion: The survival rate of women diagnosed with breast cancer in Brunei Darussalam and its significant predictors are similar to those reported from other developed countries. Further studies on predictors such as health seeking behaviours and impact of different cancer treatment will provide further insight in improving survival rates of breast cancer through early cancer detection programmes and strengthening of the healthcare service delivery.

Keywords: Breast cancer; Brunei Darussalam; Death; Hazard rate; Proportional Hazards model; Survival rate.
Brunei International Medical Journal (BIMJ)
Official Publication of the Ministry of Health, Brunei Darussalam

EDITORIAL BOARD

Editor-in-Chief
William Chee Fui CHONG

Sub-Editors
Vui Heng CHONG
Ketan PANDE

Editorial Board Members
Nazar LUQMAN
Muhd Syafiq ABDULLAH
Alice Moi Ling YONG
Ahmad Yazid ABDUL WAHAB
Jackson Chee Seng TAN
Dipo OLABUMUYI
Pemasiri Upali TELISINGHE
Roselina YAAKUB
Pengiran Khairol Asmee PENGIRAN SABTU
Dayangku Siti Nur Ashikin PENGIRAN TENGAH

INTERNATIONAL EDITORIAL BOARD MEMBERS

Lawrence HO Khek Yu (Singapore)
Emily Felicia Jan Ee SHEN (Singapore)
John YAP (United Kingdom)
Christopher HAYWARD (Australia)
Jose F LAPENNA (Philippines)

Surinderpal S BIRRING (United Kingdom)
Leslie GOH (United Kingdom)
Chuen Neng LEE (Singapore)
Jimmy SO (Singapore)
Simon Peter FROSTICK (United Kingdom)

Advisor
Wilfred PEH (Singapore)

Past Editors
Nagamuttu RAVINDRANATHAN
Kenneth Yuh Yen KOK

Proof reader
John WOLSTENHOLME (CfBT Brunei Darussalam)
three relevant references should be included. Only images of high quality (at least 300dpi) will be acceptable.

Technical innovations
This section includes papers looking at novel or new techniques that have been developed or introduced to the local setting. The text should not exceed 1000 words and should include not more than 10 figures. Illustration and references should not be more than 10.

Letters to the Editor
Letters discussing a recent article published in the BIMJ are welcome and should be sent to the Editorial Office by e-mail. The text should not exceed 250 words; have no more than one figure or table, and five references.

Criteria for manuscripts
Manuscripts submitted to the BIMJ should meet the following criteria: the content is original; the writing is clear; the study methods are appropriate; the data are valid; the conclusions are reasonable and supported by the data; the information is important; and the topic has general medical interest. Manuscripts will be accepted only if both their contents and style meet the standards required by the BIMJ.

Authorship information
Designate one corresponding author and provide a complete address, telephone and fax numbers, and e-mail address. The number of authors of each paper should not be more than twelve; a greater number requires justification. Authors may add a publishable footnote explaining order of authorship.

Group authorship
If authorship is attributed to a group (either solely or in addition to one or more individual authors), all members of the group must meet the full criteria and requirements for authorship described in the following paragraphs. One or more authors may take responsibility for a group, in which case the other group members are not authors, but may be listed in an acknowledgement.

Authorship requirement
When the BIMJ accepts a paper for publication, authors will be asked to sign statements on (1) financial disclosure, (2) conflict of interest and (3) copyright transfer. The correspondence author may sign on behalf of co-authors.

Authorship criteria and responsibility
All authors must meet the following criteria: to have participated sufficiently in the work to take public responsibility for the content; to have made substantial contributions to the conception and design, and the analysis and interpretation of the data (where applicable); to have made substantial contributions to the writing or revision of the manuscript; and to have reviewed the final version of the submitted manuscript and approved it for publication. Authors will be asked to certify that their contribution represents valid work and that neither the manuscript nor one with substantially similar content under their authorship has been published or is being considered for publication elsewhere, except as described in an attachment. If requested, authors shall provide the data on which the manuscript is based for examination by the editors or their assignees.

Financial disclosure or conflict of interest
Any affiliation with or involvement in any organisation or entity with a direct financial interest in the subject matter or materials discussed in the manuscript should be disclosed in an attachment. Any financial or material support should be identified in the manuscript.

Copyright transfer
In consideration of the action of the BIMJ in reviewing and editing a submission, the author/s will transfer, assign, or otherwise convey all copyright ownership to the Clinical Research Unit, RIPAS Hospital, Ministry of Health in the event that such work is published by the BIMJ.

Acknowledgements
Only persons who have made substantial contributions but who do not fulfill the authorship criteria should be acknowledged.

Accepted manuscripts
Authors will be informed of acceptances and accepted manuscripts will be sent for copyediting. During copyediting, there may be some changes made to accommodate the style of journal format. Attempts will be made to ensure that the overall meaning of the texts are not altered. Authors will be informed by email of the estimated time of publication. Authors may be requested to provide raw data, especially those presented in graph such as bar charts or figures so that presentations can be constructed following the format and style of the journal. Proofs will be sent to authors to check for any mistakes made during copyediting. Authors are usually given 72 hours to return the proof. No response will be taken as no further corrections required. Corrections should be kept to a minimum. Otherwise, it may cause delay in publication.

Offprint
Contributors will not be given any offprint of their published articles. Contributors can obtain an electronic reprint from the journal website.

DISCLAIMER
All articles published, including editorials and letters, represent the opinion of the contributors and do not reflect the official view or policy of the Clinical Research Unit, the Ministry of Health or the institutions with which the contributors are affiliated to unless this is clearly stated. The appearance of advertisement does not necessarily constitute endorsement by the Clinical Research Unit or Ministry of Health, Brunei Darussalam. Furthermore, the publisher cannot accept responsibility for the correctness or accuracy of the advertisers’ text and/or claim or any opinion expressed.
Aim and Scope of Brunei International Medical Journal

The Brunei International Medical Journal (BIMJ) is a six monthly peer reviewed official publication of the Ministry of Health under the auspices of the Clinical Research Unit, Ministry of Health, Brunei Darussalam.

The BIMJ publishes articles ranging from original research papers, review articles, medical practice papers, special reports, audits, case reports, images of interest, education and technical/innovation papers, editorials, commentaries and letters to the Editor. Topics of interest include all subjects that relate to clinical practice and research in all branches of medicine, basic and clinical including topics related to allied health care fields. The BIMJ welcomes manuscripts from contributors, but usually solicits reviews articles and special reports. Proposals for review papers can be sent to the Managing Editor directly. Please refer to the contact information of the Editorial Office.

Instruction to authors

Manuscript submissions
All manuscripts should be sent to the Managing Editor, BIMJ, Ministry of Health, Brunei Darussalam; e-mail: editor-in-chief@bimjonline.com. Subsequent correspondence between the BIMJ and authors will, as far as possible via should be conducted via email quoting the reference number.

Conditions
Submission of an article for consideration for publication implies the transfer of the copyright from the authors to the BIMJ upon acceptance. The final decision of acceptance rests with the Editor-in-Chief. All accepted papers become the permanent property of the BIMJ and may not be published elsewhere without written permission from the BIMJ.

Ethics
Ethical considerations will be taken into account in the assessment of papers that have experimental investigations of human or animal subjects. Authors should state clearly in the Materials and Methods section of the manuscript that institutional review board has approved the project. Those investigators without such review boards should ensure that the principles outlined in the Declaration of Helsinki have been followed.

Manuscript categories

Original articles
These include controlled trials, interventional studies, studies of screening and diagnostic tests, outcome studies, cost-effectiveness analyses, and large-scale epidemiological studies. Manuscript should include the following; introduction, materials and methods, results and conclusion. The objective should be stated clearly in the introduction. The text should not exceed 2500 words and references not more than 30.

Review articles
These are, in general, invited papers, but unsolicited reviews, if of good quality, may be considered. Reviews are systematic critical assessments of literature and data sources pertaining to clinical topics, emphasising factors such as cause, diagnosis, prognosis, therapy, or prevention. Reviews should be made relevant to our local setting and preferably supported by local data. The text should not exceed 3000 words and references not more than 40.

Special Reports
This section usually consist of invited reports that have significant impact on healthcare practice and usually cover disease outbreaks, management guidelines or policy statement paper.

Audits
Audits of relevant topics generally follow the same format as original article and the text should not exceed 1,500 words and references not more than 20.

Case reports
Case reports should highlight interesting rare cases or provide good learning points. The text should not exceed 1000 words; the number of tables, figures, or both should not be more than two, and references should not be more than 15.

Education section
This section includes papers (i.e. how to interpret ECG or chest radiography) with particular aim of broadening knowledge or serve as revision materials. Papers will usually be invited but well written paper on relevant topics may be accepted. The text should not exceed 1500 words and should include not more than 15 figures illustration and references should not be more than 15.

Images of interest
These are papers presenting unique clinical encounters that are illustrated by photographs, radiographs, or other figures. Image of interest should include a brief description of the case and discussion with educational aspects. Alternatively, a mini quiz can be presented and answers will be posted in a different section of the publication. A maximum of
FIVE-YEAR SURVIVAL RATE OF BREAST CANCER PATIENTS IN BRUNEI DARUSSALAM.

E LEONG¹, F MADLI¹, SK ONG²,³
¹ Faculty of Science, Universiti Brunei Darussalam, Jln Tungku Link, Brunei Darussalam,
² NCD Prevention Unit, Ministry of Health, Commonwealth Drive, Brunei Darussalam,
³ Early Detection & Cancer Prevention Services, Pantai Jerudong Specialist Centre, Brunei Darussalam.

ABSTRACT
Introduction: Breast cancer is the most common cancer and leading cause of cancer deaths among women worldwide. In Brunei Darussalam, breast cancer has the highest incidence rate among women. This study presents the survival rate of women diagnosed with breast cancer in Brunei Darussalam and explores the association between survival and demographic or clinical characteristics. Methods: This is a retrospective study of breast cancer diagnosed from 2007 to 2017 among women in Brunei Darussalam. Cancer data was retrieved from population based cancer registry. Kaplan-Meier survival analysis and Log rank test were applied to estimate the survival rates and the association between survival and important patients’ characteristics. Hazard ratios were derived using Cox Proportional Hazard model. Results: The survival rates of breast cancer patients at 1, 3 and 5 years were 89.5%, 79.2% and 72.0% respectively. The 5-year survival rates for cancer stages were 92.2% for localized, 76.9% for regional, and 21.4% for distant metastasis. Ethnicity, cancer stages and cancer stages-morphology interaction were significant independent predictors for breast cancer survival in Brunei Darussalam. Conclusion: The survival rate of women diagnosed with breast cancer in Brunei Darussalam and its significant predictors are similar to those reported from other developed countries. Further studies on predictors such as health seeking behaviours and impact of different cancer treatment will provide further insight in improving survival rates of breast cancer through early cancer detection programmes and strengthening of the healthcare service delivery.

Keywords: Breast cancer; Brunei Darussalam; Death; Hazard rate; Proportional Hazards model; Survival rate.

INTRODUCTION
The World Health Organization has reported cancer as the second leading cause of deaths globally.¹ In 2018, it was estimated that there were 18.1 million new cancer cases and 9.6 million cancer deaths.¹ Globally, cancer accounts for 1 in 6 deaths.¹ The most common cancer and leading cause of deaths among women worldwide is breast cancer. An estimate of 2,088,849 new cases and 626,679 deaths were reported for breast cancer alone in 2018.²
According to GLOBOCAN 2018, breast cancer incidence rates far exceed those for other cancers in both developed and developing countries. Breast cancer incidence rates are highest in Australia/New Zealand, Northern Europe, Western Europe, Southern Europe, and Northern America. However, breast cancer mortality rates show less variability, with the highest mortality estimated in Melanesia, where Fiji has the highest mortality rates worldwide. There is variation in survival rates of breast cancer worldwide which are influenced by various factors. Information about survival rates could help medical professionals and policy makers to strengthen further preventive measures in order to improve the prognosis of breast cancer patients.

Brunei Darussalam is a Southeast Asia nation with an estimated population of 421 300 people, of which 66% consists of the Malays, 10% are Chinese and 24% includes other ethnicity. It has 4 districts with 69% of the population resides in the Brunei-Muara, 12% in Tutong, 17% in Belait and 3% in Temburong district. The leading cause of deaths in Brunei Darussalam is from cancer, which accounts for about 19% of the total mortalities in the country followed by heart diseases (15%). Brunei Darussalam has relatively higher breast cancer incidence rates compared to its neighbouring countries.

To date, only a few studies have documented the rising trend and lifetime risk of breast cancer in Brunei Darussalam. Currently there is no information available on survival of breast cancer patients in Brunei Darussalam. This study aims to estimate the survival rate of women diagnosed with breast cancer in Brunei Darussalam and to identify significant prognostic factors.

METHODS

Patient Population

This is a retrospective study examining all breast cancer cases registered in the Brunei National Cancer Registry (BNCR) from 2007 to 2017 (11-year period). All female patients (citizens and permanent residents) diagnosed locally or abroad with breast cancers, registered with BNCR, were eligible to be included in the study. Breast cancers among men and temporary residents and in-situ carcinomas were excluded from the study.

Data Collection

De-identified data were retrieved from population based BNCR which captured cancer diagnosis and death reported in the health services and national death registry. Data collected included clinical demographic data, clinico-pathological information of the cancer patients and dates of last follow up or death which was tabulated in Excel proforma spreadsheet for analysis.

The covariates included for analysis were age at diagnosis, district (Brunei-Muara, Tutong, Belait, Temburong), ethnicity (Malay, Chinese, Others), location of tumour (lateral, medial, central, overlapping, others), morphology (ductal, lobular, others), and cancer stage (localized, regional and distant metastasis). Brunei Darussalam cancer registry classified the cancer cases according to staging system provided by SEER (Surveillance, Epidemiology and End Results program) which has 7 cancer stages. In this study, tumor stages were grouped using a staging system developed by the SEER program which classifies breast cancer cases into in situ, localized (SEER stage 1), regional (SEER Stages 2-5), and distant metastasis (SEER Stages 6-7).

Statistical Analysis

Data were analysed using R Statistical software package. Kaplan-Meier survival analysis was used to compute the cumulative survival curves for patients with breast cancer. Patients who are still alive or lost to follow-up by the end of the study period were right censored from the analysis. Log-rank test was
used to compare the differences in survival distributions among groups. Cox proportional hazard model was used to derive the regression coefficients and to determine independent prognostic covariates which affect the survival rate of breast cancer patients. Covariate with p-value of less than 0.05 is considered as statistically significant.

Ethical Approval
Ethical approval for this study was obtained from PAPRSB Institute of Health Science Research and Ethics Committee (IHSREC) and the Medical and Health Research Ethics committee of Ministry of Health (MHREC), Brunei Darussalam [Ref: UBD/PAPRSBIHSREC/2018/149, dated 21st January 2019].

RESULTS
A total of 917 female breast cancer cases were retrieved from BNCR but only 821 female patients with breast cancer malignancies were included in the study. The mean age at diagnosis was 52±11.8 years. About 13% were diagnosed below the age of 40 years and can be classified as young breast cancer patients (Table 1). Majority of the cases were from the Brunei-Muara district (70.6%) and of Malay ethnicity (72.8%). More than a third of patients were diagnosed at localized stage but majority (43.6%) were diagnosed at regional stage and only 18.2% had distant metastases at time of diagnosis. Ductal carcinoma was the most common morphological type (73.3%).

Survival Analysis
Out of a total of 917 cases, there were 205 (25.0%) deaths recorded in the National death registry from breast cancer during the study period. The remaining 616 (75.0%) cases were right censored by the end of the

<table>
<thead>
<tr>
<th>Variables</th>
<th>Percentage of cases (%)</th>
<th>Percentage of deaths (%)</th>
<th>5-year survival rate (%)</th>
<th>Log-rank test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 40</td>
<td>13.3</td>
<td>10.8</td>
<td>81.8</td>
<td></td>
</tr>
<tr>
<td>40 – 49</td>
<td>29.7</td>
<td>22.9</td>
<td>77.2</td>
<td></td>
</tr>
<tr>
<td>50 – 59</td>
<td>33.8</td>
<td>39.0</td>
<td>67.8</td>
<td>p =0.003</td>
</tr>
<tr>
<td>60 – 69</td>
<td>15.2</td>
<td>15.6</td>
<td>68.8</td>
<td></td>
</tr>
<tr>
<td>≥ 70</td>
<td>8.0</td>
<td>11.7</td>
<td>57.9</td>
<td></td>
</tr>
<tr>
<td>District of residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunei Muara</td>
<td>70.6</td>
<td>68.3</td>
<td>74.7</td>
<td></td>
</tr>
<tr>
<td>Tutong</td>
<td>11.6</td>
<td>10.6</td>
<td>77.2</td>
<td>p =0.415</td>
</tr>
<tr>
<td>Belait</td>
<td>16.4</td>
<td>20.0</td>
<td>65.1</td>
<td></td>
</tr>
<tr>
<td>Temburong</td>
<td>1.4</td>
<td>1.1</td>
<td>72.7</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malay</td>
<td>72.8</td>
<td>78.5</td>
<td>70.4</td>
<td>p =0.091</td>
</tr>
<tr>
<td>Chinese</td>
<td>19.2</td>
<td>17.1</td>
<td>72.9</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>8.0</td>
<td>4.4</td>
<td>85.2</td>
<td></td>
</tr>
<tr>
<td>Cancer Stage</td>
<td></td>
<td></td>
<td></td>
<td>p <0.001</td>
</tr>
<tr>
<td>Localized</td>
<td>38.2</td>
<td>12.8</td>
<td>92.2</td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>43.6</td>
<td>37.2</td>
<td>76.9</td>
<td></td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>18.2</td>
<td>50.0</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td>Location of tumour</td>
<td></td>
<td></td>
<td></td>
<td>p =0.310</td>
</tr>
<tr>
<td>Lateral</td>
<td>9.4</td>
<td>4.4</td>
<td>66.3</td>
<td></td>
</tr>
<tr>
<td>Medial</td>
<td>4.6</td>
<td>1.5</td>
<td>84.9</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>1.2</td>
<td>0.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Overlapping</td>
<td>2.7</td>
<td>1.0</td>
<td>86.9</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>82.1</td>
<td>93.2</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td></td>
<td></td>
<td></td>
<td>p =0.347</td>
</tr>
<tr>
<td>Ductal carcinoma</td>
<td>73.3</td>
<td>69.3</td>
<td>70.9</td>
<td></td>
</tr>
<tr>
<td>Lobular carcinoma</td>
<td>4.4</td>
<td>3.9</td>
<td>79.1</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>22.3</td>
<td>26.8</td>
<td>72.5</td>
<td></td>
</tr>
</tbody>
</table>
study period. The overall Kaplan Meier survival rates of breast cancer patients at 1, 3 and 5 years were 89.5%, 79.2% and 72.0% respectively (Figure 1). Breast cancer patients residing in Tutong district have the highest 5-year survival rate at 77.2% followed by Brunei-Muara (74.7%), Temburong (72.7%) and Belait (65.1%). Moreover, Malay patients have lower 5-year survival rate compared to other ethnic groups. The 5-year survival rates for cancer stages in this study were 92.2% for localized stage, 76.9% for regional stage, and 21.4% for those with distant metastasis. Patient with lobular carcinoma (79.1%) has the highest 5-year survival rate compared to patients with ductal carcinoma or other morphology with 70.9% and 72.5% respectively. Using Log rank test, the differences in survival rates between patients from different age groups (Figure 2, p=0.003) and cancer stages (Figure 3, p<0.001) were statistically significant (Table 1).

Age at diagnosis, ethnicity, district of residence, site of cancers and morphology have significant impact on survival within stage (p < 0.0001) shown in Table 2. For distant metastasis, breast cancer patient with ductal carcinoma has the lowest 5-year survival rate as compared to other morphological groups (16.9%). Patient with localized stage has the highest 5-year survival rate among all the morphological groups compared to patients with regional or distant metastasis. The discrepancies in survival rate between ductal carcinoma and other morphological groups were small for localized and regional stage and much larger for distant metastasis. The observed survival advantage of other ethnicities is also seen within localized, regional and distant metastasis stages. Compared to
other ethnicity is 0.28 times lower as compared to a Malay female breast cancer patient [HR = 0.28, 95% C.I.: 0.11 - 0.70, p=0.0062]. However, there is no significant difference between Malay and Chinese breast cancer patients (HR=0.81, 95% CI: 0.53-1.25, p=0.3330). Age at diagnosis, district, location of tumour and morphology were not statistically significant in survival of women diagnosed with breast cancer (p > 0.05).

However, this study found that there was a significant interaction between stage and morphology at all levels with hazard ratios more than 1.0 as shown in Table 4. This means that each variable (stage) depends on the level of the other (morphology). From Table 4, the hazard of death for a breast cancer patient with distant metastasis and other morphology is 16.71 times higher as compared to a breast cancer patient at localized stage with ductal carcinoma, [HR = 16.71,
stage 93%, regional stage 72% and distant metastasis stage 22%. This study shows that ethnicity has an influence on the survival of breast cancer. The 5-year survival rate for breast cancer survivors among Chinese in Brunei Darussalam were higher compared to their Malay counterpart. Similar findings were reported from studies in Southeast Asian countries. A variety of factors have been assessed to explain the ethnic disparities in breast cancer survival including genetics predisposition and lifestyle factors such as body weight. About 30% of Bruneian women were found to have obesity with BMI ≥ 30kg/m². Obesity was found to be more common in Malay women and Indian women compared to Chinese women. The role of BMI and obesity in influencing survival may possibly be due to masking effect for early detection of breast lumps by adipose tissue and hence patients may present in more advance stage.

DISCUSSION

The overall survival rates of breast cancer patients among Bruneian females at 1, 3 and 5 years were 89.5%, 79.2% and 72.0% respectively. Studies from other Asian countries have reported similar 5-year overall survival rates among breast cancer patients of 79.7% in Singapore (2011-2015), 49.0% in Malaysia (2000-2005), 58.8% in China (1972-2011) and 69.5% in Iran (2000-2005). Patients diagnosed with localized stage have much higher survival rate at 5 years (92.2%) than those with regional stage and distant metastasis with 76.9% and 21.4% respectively. Our findings are comparable to the survival statistics provided by SEER (Surveillance, Epidemiology and End Results program) from National Cancer Institute, which are 100% for cancer in situ, localized stage 93%, regional stage 72% and distant metastasis stage 22%.

This study shows that ethnicity has an influence on the survival of breast cancer. The 5-year survival rate for breast cancer survivors among Chinese in Brunei Darussalam were higher compared to their Malay counterpart. Similar findings were reported from studies in Southeast Asian countries. A variety of factors have been assessed to explain the ethnic disparities in breast cancer survival including genetics predisposition and lifestyle factors such as body weight. About 30% of Bruneian women were found to have obesity with BMI ≥ 30kg/m². Obesity was found to be more common in Malay women and Indian women compared to Chinese women. The role of BMI and obesity in influencing survival may possibly be due to masking effect for early detection of breast lumps by adipose tissue and hence patients may present in more advance stage.

Table 3: Results of Cox Proportional Hazard model

<table>
<thead>
<tr>
<th>Variables</th>
<th>coef</th>
<th>Exp(coef)</th>
<th>95% C.I.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malay</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>-0.209</td>
<td>0.812</td>
<td>(0.532, 1.251)</td>
<td>0.3330</td>
</tr>
<tr>
<td>Other</td>
<td>-1.267</td>
<td>0.282</td>
<td>(0.114, 0.697)</td>
<td>0.0062</td>
</tr>
<tr>
<td>Cancer Stage*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localized</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>0.698</td>
<td>2.010</td>
<td>(1.179, 3.427)</td>
<td>0.0103</td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>2.661</td>
<td>14.310</td>
<td>(8.565, 23.918)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Morphology*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductal carcinoma</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobular carcinoma</td>
<td>-15.540</td>
<td>1.786x10⁻⁷</td>
<td>(0.000, ∞)</td>
<td>0.9936</td>
</tr>
<tr>
<td>Others</td>
<td>-0.856</td>
<td>0.425</td>
<td>(0.145,1.251)</td>
<td>0.1203</td>
</tr>
</tbody>
</table>

Reference level: Cancer Stage (Localized), Ethnicity (Malay) and Histopathology (Ductal). C.I. = Confidence Interval. For Stage*Morphology interaction, please see table 4.

Table 4: Hazard ratio with 95% C.I. for the interaction term Stage and Morphology when compared to a breast cancer patient at localized stage with ductal carcinoma.

<table>
<thead>
<tr>
<th>Variables (Stage*Morphology)</th>
<th>HR</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional*Lobular</td>
<td>2.968</td>
<td>(2.108-4.179)</td>
</tr>
<tr>
<td>Distant metastasis*Lobular</td>
<td>11.034</td>
<td>(7.471-16.295)</td>
</tr>
<tr>
<td>Regional*Others</td>
<td>3.010</td>
<td>(1.546-5.859)</td>
</tr>
<tr>
<td>Distant metastasis*Others</td>
<td>16.710</td>
<td>(8.172-34.168)</td>
</tr>
</tbody>
</table>

Reference level: Localized*Ductal. HR=Hazard ratio, C.I. = Confidence Interval.
supported by a study which reported that Malay female breast cancer patients tended to present at more advanced stage of breast cancer and hence have lower survival rate than patients of other ethnicity. Another explanation for the differences in survival could be due to ethnic differences in cultural or religious belief system and socio-economic status which have an influence on health seeking behaviour and accessing effective treatments, as well as tolerability and response to treatment. This study however did not explore the association of ethnicity with health seeking behavior and socioeconomic statuses.

The result shows that there is a statistical significant interaction between morphology and stage in breast cancer survival. In this study, the expected hazard of death was found to be higher in a female breast cancer patient with distant metastasis than a patient with regional or localized stage, which is to be expected. This is consistent with the 5-year survival rates calculated in which the survival rate of breast cancer patients with distant metastasis is more than three times lower than that of patient with regional stage. Additionally, there were a higher number of deaths of patients with distant metastasis compared to that of patients with localized and regional stage. Several studies indicated that stage is a significant predictor for death in breast cancer patients.

Our finding is also consistent with several studies where morphology is found to have significant association with survival in breast cancer patients. However, based on Cox proportional hazard analysis, morphology was no longer a significant predictor but our analysis using stage*morphology interaction term did further increase the hazard ratios for death when comparing localized*ductal interaction term with the various other interaction terms. In this study, lobular carcinoma is found to have a slightly higher 5-year survival rates compared to ductal carcinoma (although this was not significant), consistent with other studies. One study from Canada found that lobular carcinoma has a better prognosis than ductal carcinoma for separate or combined stages. Another study found that patients with ductal carcinoma or tumors of other designations have higher survival for localized stage as compared to regional stage, consistent with our findings. It should be highlighted that age at diagnosis is found to have no significant association with survival in female breast cancer patients, consistent with other studies.

This study is the first to assess the survival rates of breast cancer patients in Brunei Darussalam and to establish the association between cancer survival and age at diagnosis, district, ethnicity, location of tumour, morphology and stage. Some limitations identified in this study were are the lack of clinical data on cancer treatment in the BNCR and problem of missing data, which are commonly seen in all retrospective studies. In addition, due to heavy censoring in the dataset, results from this study might be biased and the estimates are slightly higher than the actual values. While it is expected that there would be certain degree of data inaccuracies in any population based cancer registry, the adoption of electronic medical record system by the Brunei Darussalam healthcare services in 2013 would have enhance the accuracy, timeliness and completeness of cancer registry.

CONCLUSION
This study indicated that the survival rates of patients diagnosed with breast cancer in Brunei Darussalam as well as the predictor variables for survival are comparable and similar to those reported from other developed countries. Future studies on predictors such as health seeking behaviours and impact of different cancer treatment will provide further insight in improving survival rates of breast cancer.
cancer through early cancer detection programme and strengthening of the healthcare service delivery.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

ACKNOWLEDGEMENT
The authors would like to thank Dr Lim Kian Chai, Head of Radiology Department, RIPAS Hospital for his valuable comment of the manuscript, the supporting staff of Brunei Darussalam Cancer Registry, Ministry of Health in the collection of de-identified data and Datin Dr Hjh Noraslinah Hj Ramlee, Head of Early Detection & Cancer Prevention Services, Pantai Jerudong Specialist Centre for her valuable support during the writing of the manuscript.

REFERENCES

